Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.431
Filtrar
2.
Stroke ; 54(4): 1099-1109, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36912143

RESUMO

BACKGROUND: Cholinergic cells originating from the nuclei of the basal forebrain (BF) are critical for supporting various memory processes, yet BF cholinergic cell viability has not been explored in the context of focal cerebral ischemia. In the present study, we examined cell survival within several BF nuclei in rodents following transient middle cerebral artery occlusion. We tested the hypothesis that a previously established neuroprotective therapy-resveratrol preconditioning-would rescue BF cell loss, deficits in cholinergic-related memory performance, and hippocampal synaptic dysfunction after focal cerebral ischemia. METHODS: Adult (2-3-month old) male Sprague-Dawley rats or wild-type C57Bl/6J mice were injected intraperitoneally with a single dose of resveratrol or vehicle and subjected to transient middle cerebral artery occlusion using the intraluminal suture method 2 days later. Histopathological, behavioral, and electrophysiological outcomes were measured 1-week post-reperfusion. Animals with reduction in cerebral blood flow <30% of baseline were excluded. RESULTS: Cholinergic cell loss was observed in the medial septal nucleus and diagonal band of Broca following transient middle cerebral artery occlusion. This effect was prevented by resveratrol preconditioning, which also ameliorated transient middle cerebral artery occlusion-induced deficits in cognitive performance and hippocampal long-term potentiation. CONCLUSIONS: We demonstrate for the first time that focal cerebral ischemia induces cholinergic cell death within memory-relevant nuclei of the BF. The preservation of cholinergic cell viability may provide a mechanism by which resveratrol preconditioning improves memory performance and preserves functionality of memory-processing brain structures after focal cerebral ischemia.


Assuntos
Infarto da Artéria Cerebral Média , Transtornos da Memória , Fármacos Neuroprotetores , Resveratrol , Animais , Camundongos , Ratos , Isquemia Encefálica , Morte Celular/efeitos dos fármacos , Resveratrol/farmacologia , Cognição
3.
Ann Ist Super Sanita ; 59(1): 68-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974707

RESUMO

INTRODUCTION: Mono-(2-ethylhexyl) phthalate (MEHP) represents a toxicological risk for marine organisms due to its widespread presence in aquatic environments. METHODS: MEHP effects on cell viability, cell death and genotoxicity were investigated on the DLEC cell line, derived from early embryos of the European sea bass Dicentrarchus labrax L. RESULTS: A dose-dependent cytotoxic effect, with no induction of necrotic process, except at its highest concentration, was observed. Moreover, chromosomal instability was detected, both in binucleated and mononucleated cells, coupled with a minor inhibition of cell proliferation, whereas genomic instability was not revealed. To our knowledge, the overall results suggest the first evidence of a possible aneugenic effect of this compound in the DLEC cell line, that is the induction of chromosomal loss events without the induction of primary DNA damage. CONCLUSIONS: MEHP should be considered more harmful than its parent compound DEHP, because it induces genomic instability in the DLEC cell line without triggering cell death.


Assuntos
Organismos Aquáticos , Bass , Instabilidade Cromossômica , Citotoxinas , Mutagênicos , Organismos Aquáticos/citologia , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Bass/embriologia , Bass/genética , Linhagem Celular , Citotoxinas/toxicidade , Mutagênicos/toxicidade , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Instabilidade Cromossômica/efeitos dos fármacos , Instabilidade Cromossômica/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Relação Dose-Resposta a Droga , Dano ao DNA
4.
Artigo em Espanhol | UY-BNMED, BNUY, LILACS | ID: biblio-1513564

RESUMO

El objetivo del presente estudio fue analizar el efecto del ácido clorogénico, uno de los compuestos polifenólicos con mayor concentración en la infusión de Ilex paraguariensis, sobre el daño celular y molecular inducido por el benzo(a)pireno. La infusión de Ilex paraguariensis ("mate") es bebida por la mayoría de los habitantes de Argentina, Paraguay, sur de Brasil y Uruguay. La levadura Saccharomyces cerevisiae (cepas SC7K lys2-3; SX46A y SX46Arad14() se utilizó como modelo eucariota. Las células en crecimiento exponencial se expusieron a concentraciones crecientes de benzo(a)pireno y a tratamientos combinados con una concentración de 250 ng/mL de benzo(a)pireno y ácido clorogénico a una concentración igual a la encontrada en la infusión de yerba mate. Luego de los tratamientos se determinaron fracciones de sobrevida, frecuencia mutagénica y roturas de doble cadena de ADN así como la modulación en la expresión de la proteína Rad14 a través de un análisis de Western Blot. Se observó un aumento significativo en las fracciones de sobrevida así como una disminución en la frecuencia mutagénica después de la exposición combinada con benzo(a)pireno y ácido clorogénico en comparación con los tratamientos con benzo(a)pireno como único agente. En la cepa mutante deficiente en la proteína Rad14 se observó un aumento significativo en la sensibilidad a benzo(a)pireno en comparación con la cepa SC7K lys2-3. En los tratamientos combinados de benzo(a)pireno y ácido clorogénico se observó una importante disminución de la letalidad. Con respecto a la determinación de roturas de doble cadena de ADN no se observó fraccionamiento cromosómico a la concentración de benzo(a)pireno utilizada en los experimentos. Los análisis de Western Blot mostraron un aumento en la expresión de la proteína Rad14 en las muestras tratadas con benzo(a)pireno como único agente en comparación con la muestra control. Adicionalmente se observó una disminución en la expresión de la proteína cuando en los tratamientos se utilizaron benzo(a)pireno y ácido clorogénico combinados. Los resultados indican que el ácido clorogénico disminuye significativamente la actividad mutagénica producida por el benzo(a)pireno, la cual no se encuentra relacionada con un incremento en la remoción de las lesiones inducidas por el sistema de reparación por escisión de nucleótidos.


The aim of this study was to analyze the effect of chlorogenic acid, a polyphenolic compound found at high concentrations in Ilex paraguariensis infusions, on cellular and molecular damage induced by benzo(a)pyrene. Ilex paraguariensis infusions ("mate") are consumed by most of the population in Argentina, Paraguay, southern Brazil and Uruguay. Saccharomyces cerevisiae yeast (SC7K lys2-3; SX46A and SX46Arad14( strains) were used as eukaryotic model organisms. Cells in an exponential growth phase were exposed to increasing concentrations of benzo(a)pyrene, as well as combined treatments of benzo(a)pyrene at a concentration of 250 ng/mL and chlorogenic acid at a concentration matching that which is commonly found in mate. Determinations of surviving fraction, mutagenic frequency and double strand DNA breaks induction were performed, along with the assessment of the modulation of the expression of protein Rad14 by Western Blot. A significant increase of surviving fractions and a decrease in mutagenic frequency were observed after exposure to benzo(a)pyrene plus chlorogenic acid, contrary to benzo(a)pyrene alone. A substantial increase in sensitivity to benzo(a)pyrene was observed for the Rad14 protein-deficient mutating strain when compared to the SC7K lys2-3 strain. An important decrease in lethality was observed when combined benzo(a)pyrene and chlorogenic acid treatments were applied. As for the determination of DSBs, no chromosomic fractionation was observed at the benzo(a)pyrene concentration tested in the experiments. Western Blot analysis showed an increase in the expression of protein Rad14 for samples treated with benzo(a)pyrene as a single agent when compared against the control sample. Additionally, the expression of this protein was observed to diminish when combined treatments with benzo(a)pyrene and chlorogenic acid were used. Results obtained indicate that chlorogenic acid significantly decreases the mutagenic activity of benzo(a)pyrene, which is not related to an increase in the removal of lesions induced by nucleotide excision repair system.


O objetivo deste estudo foi analisar o efeito do ácido clorogênico, um dos compostos polifenólicos com maior concentração na infusão de Ilex paraguariensis, sobre o dano celular e molecular induzido pelo benzopireno. A infusão de Ilex paraguariensis ("mate") é consumida pela maioria dos habitantes da Argentina, Paraguai, sul do Brasil e Uruguai. A levedura Saccharomyces cerevisiae (cepas SC7K lys2-3; SX46A e SX46Arad14() foi utilizada como modelo eucariótico. Células em crescimento exponencial foram expostas a concentrações crescentes de benzopireno e tratamentos combinados foram realizados com uma concentração de 250 ng/mL de benzo(a)pireno e ácido clorogênico, igual à encontrada na infusão de erva-mate. Após os tratamentos, foram determinadas as frações de sobrevivência, frequência mutagênica e quebras de fita dupla do DNA, bem como a modulação na expressão da proteína Rad14 por meio de análise de Western Blot. Um aumento significativo nas frações de sobrevivência, bem como uma diminuição na frequência mutagênica foram observados após a exposição combinada de benzo(a)pireno e ácido clorogênico em comparação com tratamentos de agente único de benzo(a)pireno. Um aumento significativo na sensibilidade ao benzo(a)pireno foi observado na cepa mutante deficiente em proteína Rad14 em comparação com a cepa SC7K lys2-3. Nos tratamentos combinados de benzo(a)pireno e ácido clorogênico, observou-se uma diminuição significativa na letalidade. Com relação à determinação das quebras de fita dupla de DNA, não foi observado fracionamento cromossômico na concentração de benzo(a)pireno utilizada nos experimentos. A partir da análise de Western Blot, observou-se um aumento na expressão da proteína Rad14 nas amostras tratadas com benzo(a)pireno como agente único em relação à amostra controle. Além disso, uma diminuição na expressão da proteína foi observada quando combinados de benzo(a)pireno e ácido clorogênico foram usados ​​nos tratamentos. Os resultados obtidos neste trabalho indicam que o ácido clorogênico diminui significativamente a atividade mutagênica produzida pelo benzo(a)pireno, a qual não está relacionada a um aumento na remoção de lesões induzidas pelo sistema de reparo por excisão de nucleotídeos.


Assuntos
Benzo(a)pireno/farmacologia , Ácido Clorogênico/farmacologia , Morte Celular/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/efeitos adversos , Enzimas Reparadoras do DNA/genética , Benzo(a)pireno/toxicidade , Mutagênese/efeitos dos fármacos , Morte Celular/genética , Antimutagênicos/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Taxa de Mutação
5.
J Virol ; 96(19): e0112222, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121298

RESUMO

Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the "high" multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.


Assuntos
Heparina , Células-Tronco Neurais , Fármacos Neuroprotetores , Zika virus , Anticoagulantes/farmacologia , Antivirais/farmacologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular , Heparina/farmacologia , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Neuroglia/citologia , Neuroglia/virologia , Fármacos Neuroprotetores/farmacologia , Replicação Viral , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico
6.
Reprod Biol Endocrinol ; 20(1): 104, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840944

RESUMO

BACKGROUND: Human granulosa-lutein cells (hGLCs) amply express sirtuin-1 (SIRT1), a NAD + -dependent deacetylase that is associated with various cellular functions. SIRT1 was shown to elevate cAMP on its own and additively with human chorionic gonadotropin (hCG), it is therefore interesting to examine if SIRT1 affects other essential hGLC functions. METHODS: Primary hGLCs, obtained from the follicular aspirates of women undergoing IVF and SV40-transfected, immortalized hGLCs (SVOG cells), were used. Primary cells were treated with SIRT1 specific activator SRT2104, as well as hCG or their combination. Additionally, siRNA-targeting SIRT1 construct was used to silence endogenous SIRT1 in SVOG cells. PTGS2, EREG, VEGFA and FGF2 expression was determined using quantitative polymerase chain reaction (qPCR). Apoptotic and necroptotic proteins were determined by specific antibodies in western blotting. Cell viability/apoptosis was determined by the XTT and flow cytometry analyses. Data were analyzed using student t-test or Mann-Whitney U test or one-way ANOVA followed by Tukey HSD post hoc test. RESULTS: In primary and immortalized hGLCs, SRT2104 significantly upregulated key ovulatory and angiogenic genes: PTGS2, EREG, FGF2 and VEGFA, these effects tended to be further augmented in the presence of hCG. Additionally, SRT2104 dose and time-dependently decreased viable cell numbers. Flow cytometry of Annexin V stained cells confirmed that SIRT1 reduced live cell numbers and increased late apoptotic and necrotic cells. Moreover, we found that SIRT1 markedly reduced anti-apoptotic BCL-XL and MCL1 protein levels and increased cleaved forms of pro-apoptotic proteins caspase-3 and PARP. SIRT1 also significantly induced necroptotic proteins RIPK1 and MLKL. RIPK1 inhibitor, necrostatin-1 mitigated SIRT1 actions on RIPK1 and MLKL but also on cleaved caspase-3 and PARP and in accordance on live and apoptotic cells, implying a role for RIPK1 in SIRT1-induced cell death. SIRT1 silencing produced inverse effects on sorted cell populations, anti-apoptotic, pro-apoptotic and necroptotic proteins, corroborating SIRT1 activation. CONCLUSIONS: These findings reveal that in hGLCs, SIRT1 enhances the expression of ovulatory and angiogenic genes while eventually advancing cell death pathways. Interestingly, these seemingly contradictory events may have occurred in a cAMP-dependent manner.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Sirtuína 1 , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Gonadotropina Coriônica/metabolismo , Gonadotropina Coriônica/farmacologia , Ciclo-Oxigenase 2/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células da Granulosa/metabolismo , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo
7.
Part Fibre Toxicol ; 19(1): 33, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538581

RESUMO

BACKGROUND: Copper oxide (CuO) nanoparticles (NPs) are known to trigger cytotoxicity in a variety of cell models, but the mechanism of cell death remains unknown. Here we addressed the mechanism of cytotoxicity in macrophages exposed to CuO NPs versus copper chloride (CuCl2). METHODS: The mouse macrophage cell line RAW264.7 was used as an in vitro model. Particle uptake and the cellular dose of Cu were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The deposition of Cu in lysosomes isolated from macrophages was also determined by ICP-MS. Cell viability (metabolic activity) was assessed using the Alamar Blue assay, and oxidative stress was monitored by a variety of methods including a luminescence-based assay for cellular glutathione (GSH), and flow cytometry-based detection of mitochondrial superoxide and mitochondrial membrane potential. Protein aggregation was determined by confocal microscopy using an aggresome-specific dye and protein misfolding was determined by circular dichroism (CD) spectroscopy. Lastly, proteasome activity was investigated using a fluorometric assay. RESULTS: We observed rapid cellular uptake of CuO NPs in macrophages with deposition in lysosomes. CuO NP-elicited cell death was characterized by mitochondrial swelling with signs of oxidative stress including the production of mitochondrial superoxide and cellular depletion of GSH. We also observed a dose-dependent accumulation of polyubiquitinated proteins and loss of proteasomal function in CuO NP-exposed cells, and we could demonstrate misfolding and mitochondrial translocation of superoxide dismutase 1 (SOD1), a Cu/Zn-dependent enzyme that plays a pivotal role in the defense against oxidative stress. The chelation of copper ions using tetrathiomolybdate (TTM) prevented cell death whereas inhibition of the cellular SOD1 chaperone aggravated toxicity. Moreover, CuO NP-triggered cell death was insensitive to the pan-caspase inhibitor, zVAD-fmk, and to wortmannin, an inhibitor of autophagy, implying that this was a non-apoptotic cell death. ZnO NPs, on the other hand, triggered autophagic cell death. CONCLUSIONS: CuO NPs undergo dissolution in lysosomes leading to copper-dependent macrophage cell death characterized by protein misfolding and proteasomal insufficiency. Specifically, we present novel evidence for Cu-induced SOD1 misfolding which accords with the pronounced oxidative stress observed in CuO NP-exposed macrophages. These results are relevant for our understanding of the consequences of inadvertent human exposure to CuO NPs.


Assuntos
Macrófagos , Nanopartículas Metálicas , Nanopartículas , Superóxido Dismutase-1 , Animais , Morte Celular/efeitos dos fármacos , Cobre , Glutationa/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Nanopartículas Metálicas/toxicidade , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo , Dobramento de Proteína/efeitos dos fármacos , Células RAW 264.7 , Superóxido Dismutase-1/metabolismo , Superóxidos
8.
Cardiovasc Toxicol ; 22(8): 746-762, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35593990

RESUMO

PM2.5 exposure can induce or exacerbate heart failure and is associated with an increased risk of heart failure hospitalization and mortality; however, the underlying mechanisms remain unclear. This study focuses on the potential mechanisms underlying PM2.5 induction of cardiomyocyte programmed necrosis as well as its promotion of cardiac function impairment in a mouse model of heart failure with preserved ejection fraction (HFpEF). HFpEF mice were exposed to concentrated ambient PM2.5 (CAP) (CAP group) or filtered air (FA) (FA group) for 6 weeks. Changes in myocardial pathology and cardiac function were documented for comparisons between the two groups. In vitro experiments were performed to measure oxidative stress and mitochondrial permeability transition pore (mPTP) dynamics in H9C2 cells following 24 h exposure to PM2.5. Additionally, co-immunoprecipitation was conducted to detect p53 and cyclophilin D (CypD) interactions. The results showed exposure to CAP promoted cardiac function impairment in HFpEF mice. Myocardial pathology analysis and in vitro experiments demonstrated that PM2.5 led to mitochondrial damage in cardiomyocytes and, eventually, their necrosis. Moreover, our experiments also suggested that PM2.5 increases mitochondrial reactive oxygen species (ROS), induces DNA oxidative damage, and decreases the inner mitochondrial membrane potential (ΔΨm). This indicates the presence of mPTP opening. Co-immunoprecipitation results showed a p53/CypD interaction in the myocardial tissue of HFpEF mice in the CAP group. Inhibition of CypD by cyclosporin A was found to reverse PM2.5-induced mPTP opening and H9C2 cell death. In conclusion, PM2.5 induces mPTP opening to stimulate mitochondria-mediated programmed necrosis of cardiomyocytes, and it might exacerbate cardiac function impairment in HFpEF mice.


Assuntos
Insuficiência Cardíaca , Poro de Transição de Permeabilidade Mitocondrial , Animais , Morte Celular/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Miócitos Cardíacos/metabolismo , Necrose/metabolismo , Material Particulado/toxicidade , Volume Sistólico , Proteína Supressora de Tumor p53/metabolismo
9.
Phytomedicine ; 102: 154164, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35597026

RESUMO

BACKGROUND: Many extracts and purified alkaloids of M. cordata (Papaveraceae family) have been reported to display promising anti-tumor effects by inhibiting cancer cell growth and inducing apoptosis in many cancer types. However, no evidence currently exists for anti-pancreatic cancer activity of alkaloids extracted from M. cordata, including a novel alkaloid named 6­methoxy dihydrosphingosine (6-Methoxydihydroavicine, 6-ME) derived from M. cordata fruits. PURPOSE: The aim of this study was to investigate the anti-tumor effects of 6-ME on PC cells and the underlying mechanism. METHODS: CCK-8, RTCA, and colony-formation assays were used to analyze PC cell growth. Cell death ratios, changes in MMP and ROS levels were measured by flow cytometry within corresponding detection kits. A Seahorse XFe96 was employed to examine the effects of 6-ME on cellular bioenergetics. Western blot and q-RT-PCR were conducted to detect changes in target molecules. RESULTS: 6-ME effectively reduced the growth of PC cells and promoted PCD by activating RIPK1, caspases, and GSDME. Specifically, 6-ME treatment caused a disruption of OAA metabolism and increased ROS production, thereby affecting mitochondrial homeostasis and reducing aerobic glycolysis. These responses resulted in mitophagy and RIPK1-mediated cell death. CONCLUSION: 6-ME exhibited specific anti-tumor effects through interrupting OAA metabolic homeostasis to trigger ROS/RIPK1-dependent cell death and mitochondrial dysfunction, suggesting that 6-ME could be considered as a highly promising compound for PC intervention.


Assuntos
Alcaloides , Antineoplásicos , Caspases , Equol/análogos & derivados , Ácido Oxaloacético , Neoplasias Pancreáticas , Espécies Reativas de Oxigênio , Proteína Serina-Treonina Quinases de Interação com Receptores , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Equol/farmacologia , Humanos , Ácido Oxaloacético/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Papaveraceae/química , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
10.
J Mol Med (Berl) ; 100(5): 797-813, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35471608

RESUMO

Aminoglycoside antibiotics are lifesaving medicines, crucial for the treatment of chronic or drug resistant infections. However, aminoglycosides are toxic to the sensory hair cells in the inner ear. As a result, aminoglycoside-treated individuals can develop permanent hearing loss and vestibular impairment. There is considerable evidence that reactive oxygen species (ROS) production and the subsequent phosphorylation of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (P38) drives apoptosis in aminoglycoside-treated hair cells. However, treatment strategies that directly inhibit ROS, JNK, or P38 are limited by the importance of these molecules for normal cellular function. Alternatively, the upstream regulator apoptosis signal-regulating kinase 1 (ASK1/MAP3K5) is a key mediator of ROS-induced JNK and P38 activation under pathologic but not homeostatic conditions. We investigated ASK1 as a mediator of drug-induced hair cell death using cochlear explants from Ask1 knockout mice, demonstrating that Ask1 deficiency attenuates neomycin-induced hair cell death. We then evaluated pharmacological inhibition of ASK1 with GS-444217 as a potential otoprotective therapy. GS-444217 significantly attenuated hair cell death in neomycin-treated explants but did not impact aminoglycoside efficacy against P. aeruginosa in the broth dilution test. Overall, we provide significant pre-clinical evidence that ASK1 inhibition represents a novel strategy for preventing aminoglycoside ototoxicity. KEY MESSAGES: ASK1 is an upstream, redox-sensitive regulator of P38 and JNK, which are known mediators of hair cell death. Ask1 knockout does not affect hair cell development in vivo, but significantly reduces aminoglycoside-induced hair cell death in vitro. A small-molecule inhibitor of ASK1 attenuates neomycin-induced hair cell death, and does not impact antibiotic efficacy in vitro. ASK1 may be a novel molecular target for preventing aminoglycoside-induced hearing loss.


Assuntos
Aminoglicosídeos , Células Ciliadas Auditivas , Perda Auditiva , MAP Quinase Quinase Quinase 5 , Aminoglicosídeos/efeitos adversos , Animais , Antibacterianos/efeitos adversos , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Perda Auditiva/induzido quimicamente , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Perda Auditiva/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Neomicina/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
J Biol Chem ; 298(4): 101821, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283189

RESUMO

Antibodies that target immune checkpoint proteins such as programmed cell death protein 1, programmed death ligand 1, and cytotoxic T-lymphocyte-associated antigen 4 in human cancers have achieved impressive clinical success; however, a significant proportion of patients fail to respond to these treatments. Galectin-9 (Gal-9), a ß-galactoside-binding protein, has been shown to induce T-cell death and facilitate immunosuppression in the tumor microenvironment by binding to immunomodulatory receptors such as T-cell immunoglobulin and mucin domain-containing molecule 3 and the innate immune receptor dectin-1, suggesting that it may have potential as a target for cancer immunotherapy. Here, we report the development of two novel Gal-9-neutralizing antibodies that specifically react with the N-carbohydrate-recognition domain of human Gal-9 with high affinity. We also show using cell-based functional assays that these antibodies efficiently protected human T cells from Gal-9-induced cell death. Notably, in a T-cell/tumor cell coculture assay of cytotoxicity, these antibodies significantly promoted T cell-mediated killing of tumor cells. Taken together, our findings demonstrate potent inhibition of human Gal-9 by neutralizing antibodies, which may open new avenues for cancer immunotherapy.


Assuntos
Anticorpos Neutralizantes , Morte Celular , Galectinas , Linfócitos T , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Morte Celular/efeitos dos fármacos , Galectinas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Microambiente Tumoral
12.
Acta Pharmacol Sin ; 43(10): 2527-2541, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35347247

RESUMO

Oxidative stress is extensively involved in neurodegeneration. Clinical evidence shows that keeping the mind active through mentally-stimulating physical activities can effectively slow down the progression of neurodegeneration. With increased physical activities, more neurotransmitters would be released in the brain. In the present study, we investigated whether some of the released neurotransmitters might have a beneficial effect against oxidative neurodegeneration in vitro. Glutamate-induced, glutathione depletion-associated oxidative cytotoxicity in HT22 mouse hippocampal neuronal cells was used as an experimental model. We showed that norepinephrine (NE, 50 µM) or dopamine (DA, 50 µM) exerted potent protective effect against glutamate-induced cytotoxicity, but this effect was not observed when other neurotransmitters such as histamine, γ-aminobutyric acid, serotonin, glycine and acetylcholine were tested. In glutamate-treated HT22 cells, both NE and DA significantly suppressed glutathione depletion-associated mitochondrial dysfunction including mitochondrial superoxide accumulation, ATP depletion and mitochondrial AIF release. Moreover, both NE and DA inhibited glutathione depletion-associated MAPKs activation, p53 phosphorylation and GADD45α activation. Molecular docking analysis revealed that NE and DA could bind to protein disulfide isomerase (PDI). In biochemical enzymatic assay in vitro, NE and DA dose-dependently inhibited the reductive activity of PDI. We further revealed that the protective effect of NE and DA against glutamate-induced oxidative cytotoxicity was mediated through inhibition of PDI-catalyzed dimerization of the neuronal nitric oxide synthase. Collectively, the results of this study suggest that NE and DA may have a protective effect against oxidative neurodegeneration through inhibition of protein disulfide isomerase and the subsequent activation of the MAPKs‒p53‒GADD45α oxidative cascade.


Assuntos
Morte Celular , Dopamina , Neuroproteção , Norepinefrina , Isomerases de Dissulfetos de Proteínas , Acetilcolina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Dopamina/farmacologia , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Glicina/farmacologia , Histamina/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Neuroproteção/efeitos dos fármacos , Neurotransmissores , Óxido Nítrico Sintase Tipo I/metabolismo , Norepinefrina/farmacologia , Estresse Oxidativo , Isomerases de Dissulfetos de Proteínas/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Superóxidos/metabolismo , Superóxidos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
Biomed Pharmacother ; 148: 112763, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35240526

RESUMO

Alzheimer's disease (AD) is caused by various pathological mechanisms; therefore, it is necessary to develop drugs that simultaneously act on multiple targets. In this study, we investigated the effects of eugenitol, which has anti-amyloid ß (Aß) and anti-neuroinflammatory effects, in an AD mouse model. We found that eugenitol potently inhibited Aß plaque and oligomer formation. Moreover, eugenitol dissociated the preformed Aß plaques and reduced Aß-induced nero2a cell death. An in silico docking simulation study showed that eugenitol may interact with Aß1-42 monomers and fibrils. Eugenitol showed radical scavenging effects and potently reduced the release of proinflammatory cytokines from lipopolysaccharide-treated BV2 cells. Systemic administration of eugenitol blocked Aß aggregate-induced memory impairment in the Morris water maze test in a dose-dependent manner. In 5XFAD mice, prolonged administration of eugenitol ameliorated memory and hippocampal long-term potentiation impairment. Moreover, eugenitol significantly reduced Aß deposits and neuroinflammation in the hippocampus of 5XFAD mice. These results suggest that eugenitol, which has anti-Aß aggregation, Aß fibril dissociation, and anti-inflammatory effects, potently modulates AD-like pathologies in 5XFAD mice, and could be a promising candidate for AD therapy.


Assuntos
Peptídeos beta-Amiloides , Transtornos da Memória , Doenças Neuroinflamatórias , Animais , Masculino , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/metabolismo , Hipocampo/efeitos dos fármacos , Transtornos da Memória/patologia , Doenças Neuroinflamatórias/patologia , Espécies Reativas de Oxigênio/metabolismo
14.
Science ; 375(6586): 1231-1232, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298241

RESUMO

Excess copper causes mitochondrial protein aggregation and triggers a distinct form of cell death.


Assuntos
Cobre , Morte Celular/efeitos dos fármacos , Cobre/metabolismo , Cobre/toxicidade
15.
Int J Oncol ; 60(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35234266

RESUMO

Melanoma continues to be the most aggressive and devastating form of skin cancer for which the development of novel therapies is required. The present study aimed to determine the effects of antagonism of the transient receptor potential melastatin­2 (TRPM2) ion channel in primary human malignant melanoma cells. TRPM2 antagonism via use of the antifungal agent, clotrimazole, led to decreases in cell proliferation, as well as dose­dependent increases in cell death in all melanoma cell lines investigated. The targeting of TRPM2 channels was verified using TRPM2 knockdown, where treatment with TRPM2 small­interfering RNA led to similar levels of cell death in all melanoma cell lines when compared with clotrimazole treatment. Minimal effects on proliferation and cell death were observed following antagonism or knockdown of TRPM2 in non­cancerous human keratinocytes. Moreover, characteristics of TRPM2 were explored in these melanoma cells and the results demonstrated that TRPM2, localized to the plasma membrane as a non­specific ion channel in non­cancerous cells, displayed a nuclear localization in all human melanoma cell lines analyzed. Additional characterization of these melanoma cell lines confirmed that each expressed one or more established multidrug resistance genes. Results of the present study therefore indicated that antagonism of the TRPM2 channel led to antitumor effects in human melanoma cells, including those that are potentially unresponsive to current treatments due to the expression of drug resistance genes. The unique cellular localization of TRPM2 and the specificity of the antitumor effects elicited by TRPM2 antagonism suggested that TRPM2 possesses a unique role in melanoma cells. Collectively, the targeting of TRPM2 represents a potentially novel, efficacious and readily accessible treatment option for patients with melanoma.


Assuntos
Linhagem Celular Tumoral/metabolismo , Melanoma/genética , Melanoma/prevenção & controle , Canais de Cátion TRPM/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral/fisiologia , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico
16.
Biomed Pharmacother ; 148: 112742, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35228063

RESUMO

The activation of artemisinin and its derivatives (ARTs) to generate ROS and other free radicals is mainly heme- or ferrous iron-dependent. ARTs induce ferroptosis in tumor cells, although the involvement of ferroptosis in malaria remains unclear. We found that three typical inducers of ferroptosis (erastin, RSL3 and sorafenib) could effectively mimic DHA inhibition on the growth of blood-stage parasites, which exhibited synergistic or nearly additive interactions in vitro with DHA, while the combination of DHA with ferroptosis inhibitors (deferoxamine, liproxstatin-1) had an obvious antagonistic effect. DHA, similar to ferroptosis inducers, can simultaneously induce the accumulation of ferroptosis-associated cellular labile iron and lipid peroxide. However, deferoxamine and liproxstatin-1 reduced the increase in ferrous iron and lipid peroxide caused by DHA. These results suggested that ferroptosis might be an effective way to induce cell death in parasites and could be a primary mechanism by which DHA kills parasites, with almost 50% contribution at low concentrations. These results provide a new strategy for antimalarial drug screening and clinical medication guidance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Ferroptose/efeitos dos fármacos , Malária/tratamento farmacológico , Animais , Morte Celular/efeitos dos fármacos , Feminino , Humanos , Malária/metabolismo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Parasitos/efeitos dos fármacos , Piperazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sorafenibe/farmacologia
17.
Food Funct ; 13(4): 2200-2215, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119449

RESUMO

Multidrug resistance (MDR) is a major cause of chemotherapy failure. Adriamycin (ADR) has been widely used to treat cancer, however, as a substrate of the adenosine triphosphate binding cassette (ABC) transporter, it is easy to develop drug resistance during the treatment. Here, we demonstrated that steroidal saponin S-20 isolated from the berries of black nightshade has comparable cytotoxicity in ADR-sensitive and resistant K562 cell lines. Autophagy is generally considered to be a protective mechanism to mediate MDR during treatment. However, we found that S-20-induced cell death in K562/ADR is associated with autophagy. We further explored the underlying mechanisms and found that S-20 induces caspase-dependent apoptosis in ADR-sensitive and resistant K562 cell lines. Most importantly, S-20-induced autophagy activates the ERK pathway and then inhibits the expression of drug resistance protein, which is the main reason to overcome K562/ADR resistance, rather than apoptosis. Taken together, our findings emphasize that S-20 exerts anti-multidrug resistance activity in K562/ADR cells through autophagic cell death and ERK activation, which may be considered as an effective strategy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Saponinas/uso terapêutico , Solanum nigrum , Morte Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Frutas , Humanos , Concentração Inibidora 50 , Células K562/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Saponinas/farmacologia
18.
Biochem Biophys Res Commun ; 596: 56-62, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35114585

RESUMO

Despite the success of proteasome inhibitors (PIs) in treating hematopoietic malignancies, including multiple myeloma (MM), their clinical efficacy is limited in solid tumors. In this study, we investigated the involvement of the integrated stress response (ISR), a central cellular adaptive program that responds to proteostatic defects by tuning protein synthesis rates, in determining the fates of cells treated with PI, bortezomib (Bz). We found that Bz induces ISR, and this can be reversed by ISRIB, a small molecule that restores eIF2B-mediated translation during ISR, in both Bz-sensitive MM cells and Bz-insensitive breast cancer cells. Interestingly, while ISRIB protected MM cells from Bz-induced apoptosis, it enhanced Bz sensitivity in breast cancer cells by inducing paraptosis, the cell death mode that is accompanied by dilation of the endoplasmic reticulum (ER) and mitochondria. Combined treatment with ISRIB and Bz may shift the fate of Bz-insensitive cancer cells toward paraptosis by inducing translational rescue, leading to irresolvable proteotoxic stress.


Assuntos
Acetamidas/farmacologia , Bortezomib/farmacologia , Neoplasias da Mama/metabolismo , Cicloexilaminas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Inibidores de Proteassoma/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
19.
Mol Med Rep ; 25(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35137924

RESUMO

The present study investigated the anti­melanogenic activity of 10 essential oils using the B16F10 cell model. Initially, a wide range of concentrations of these essential oils were screened in order to determine their toxicity levels. The assigned non­toxic concentrations of the tested essential oils were then used to evaluate their effects on melanogenesis. The effects of the essential oils with potent anti­melanogenic activity on cell proliferation, protection against H2O2­induced cell death and the expression of certain melanogenesis­related genes, including MITF, tyrosinase, tyrosinase related protein (TRP)­1 and TRP­2 were also evaluated. The results revealed that the essential oils extracted from Citrus unshiu, Juniperus chinensis L., Zanthoxylum piperitum and Artemisia capillaris (A. capillaris) inhibited melanogenesis. However, among these four extracts, only A. capillaris extract enhanced cell proliferation, exhibited anti­H2O2 activities and decreased the expression level of TRP­1. It was demonstrated that A. capillaris extract inhibited melanin synthesis via the downregulation of the TRP­1 translational level. These essential oil extracts, particularly that of A. capillaris, may thus be used as natural anti­melanogenic agents for therapeutic purposes and in the cosmetic industry for skin whitening effects with beneficial proliferative properties. However, further studies using in vivo models are required to validate these findings and to examine the effects of these extracts on various molecular pathways.


Assuntos
Artemisia/química , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Óleos Voláteis/farmacologia , Substâncias Protetoras/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citrus/química , Peróxido de Hidrogênio/toxicidade , Juniperus/química , Melaninas/genética , Melaninas/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Extratos Vegetais/farmacologia , Zanthoxylum/química
20.
Toxicol Appl Pharmacol ; 438: 115908, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123989

RESUMO

Gastric cancer is one of the most common cancers with few effective treatments, a new treatment agent is desperately needed. C-2, a Jaspine B derivative, has shown anti-cancer efficacy in gastric cancer cells. The anti-cancer mechanism, however, remains unknown. As a result, we investigate the anti-cancer effect and the underlying mechanism of C-2 in gastric cancer cells. The results showed that C-2 selectively reduced the proliferation of gastric cancer cells when compared to normal epithelial gastric cells. Western blotting and flow cytometry further demonstrated that Caspase9 is involved in causing cell death. Meanwhile, C-2 triggered autophagy in gastric cancer cells, inhibition of which with LY294002 can enhance the anti-proliferative activity of C-2. Next, we found that C-2 triggered autophagy through activating JNK/ERK, and that inhibitors of these proteins exacerbated C-2 induced cell death. Mechanically, enhanced phosphorylation of JNK/ERK elevated Beclin-1 by disturbing Beclin-1/Bcl-xL or Beclin-1/Bcl-2 complexes, resulting in autophagy and up-regulation of p62. Finally, p62 binds Keap1 competitively to release Nrf2, boosting Nrf2 translocation from the cytoplasm to the nucleus and triggering expression of Nrf2 target genes, so enhancing survival. C-2 inhibited the growth of gastric cancer cells, while JNK/ERK dependent autophagy antagonized C-2 induced cell growth inhibition through p62/Keap1/Nrf2 pathway.


Assuntos
Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Esfingosina/análogos & derivados , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Esfingosina/farmacologia , Neoplasias Gástricas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...